

# Heavy-Labeled MS Protein Standard Human IGF-1 (lys- ${}^{15}N_2$ , 99%; arg- ${}^{13}C_{e'}$ , ${}^{15}N_4$ , 99%)

Catalog No. CNLM-9513

## Significance

IGF-1 is a hormone that is similar in structure to insulin. It plays a large role in childhood growth and also has anabolic effects on adults. A labeled version has been used as an internal standard for a mass spectrometry-based assay to test for doping.<sup>1-3</sup>

## **Product Description**

A 10 µg/mL solution of human IGF-1, with lysine residues labeled as  ${}^{13}C_{6}$ ,  ${}^{15}N_{2}$  (99%) and arginine residues labeled as  ${}^{13}C_{6}$ ,  ${}^{15}N_{4}$  (99%), in 20 mM sodium phosphate buffer, pH 7, containing 10 mg/mL trehalose.

## **Product Specifications**

| Analytical Test                  | Specification |
|----------------------------------|---------------|
| LC/MS for isotopic incorporation | >99%          |
| SDS-PAGE for purity              | >90%          |
| AAA-MS for concentration         | 10 µg/mL      |

## **Additional Information**

pH = 7

Storage: Store at -80°C; avoid freeze-thaw cycles Stability: Retest after 1 year

Molecular weight (calculated):

IGF-1 (unlabeled) = 7649 Da

IGF-1 (lys- ${}^{13}C_{6'}{}^{15}N_{2}$ , 99%; arg- ${}^{13}C_{6'}{}^{15}N_{4'}$ , 99%) = 7733 Da

Source: E. coli

**Note:** This product contains two structures of labeled IGF-1 with different disulfide connectivities.<sup>4,5</sup>

#### **Protein Sequence**

GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIV DECCFRSCDLRRLEMYCAPLKPAKSA (70 AA)

#### References

- Picard, G., et al. 2012. PSAQ<sup>™</sup> standards for accurate MS-based quantification of proteins: from the concept to biomedical applications. *J Mass Spec*, 47(100), 1353-1363.
- Cox, H.D., et al. 2013. Quantification of insulin-like growth factor-1 in dried blood spots for detection of growth hormone abuse in sport. *Anal Bioanal Chem*, 405:1949-1958.
- Cox, H.D., et al. 2014. Interlaboratory agreement of insulin-like growth factor-1 concentrations measured by mass spectrometry. *Clin Chem*, 60(3), 541-548.
- Chang, J.Y., et al. **1999**. Analysis of the extent of unfolding of denatured insulin-like growth factor. *Prot Sci, 8*:1463-1468. Cambridge University Press. Printed in the USA.
- Miller, J.A., et al. **1993**. Oxidative refolding of insulin-like growth factor 1 yields two products of similar thermodynamic stability: a bifurcating protein-folding pathway. *Biochem*, *32(19)*, 5203-5313.

